
DB2 UDB Universal Database Version 7
Concurrency and Locking

Sven Noltemeier
IBM Deutschland Entwicklung GmbH

Agenda

Concurrency problems

Isolation with locking as the solution

Isolation levels in DB2

Locking in DB2

Deadlock detection and time-outs

Summary

Many applications (users) work on the same database at the
same time ("concurrently")

They perform logical units of work (transactions) with
atomicity ("all or nothing" behavior): COMMIT or ROLLBACK

Typically, two conflicting objectives:
As much concurrent access to data as possible
As much data integrity as necessary for the application.

Problems with applications concurrently working on the same
data ...

Concurrency

Lost update

Uncommitted read

Non-repeatable read

Phantom read

Concurrency Problems

Occurs when:
The same data is retrieved by two applications (users)
Both work with the data concurrently
Both change and save the data

The last successful change to the data will be kept

The first change will be overwritten

Example:

select salary from staff where id =111
update staff set salary = salary * 1.03

User 2
User 1

update staff set salary = salary + 500 where id = 111

Lost Update

Uncommitted Read ("Dirty Read")

Occurs when:
Uncommitted changes to data are read by an application (user)
The changes are rolled back

The reading application gets invalid data

Example:

update staff set salary = salary + 500000 where id = 111
insert into high_costs
(select id from staff where salary > 100000)

User 2

User 1
ROLLBACK

Non-Repeatable Read

Occurs when:
An application reads a query result
Later on, in the same transaction, the same query yields a different result (some rows have vanished)

Query results are not repeatable, one can't rely on them

Reason: rows in the result set were updated or deleted by
someone else

Example:

select nr from free_seats where flight_id = 3207
delete from free_seats where flight_id = 3207 and nr = '21A'

select nr from free_seats where flight_id = 3207
User 2

User 1

Phantom Read

Occurs when:
An application reads a query result
Later in the same transaction, the same query yields a different result (some additional rows appear like
a phantom)

Reason: rows qualifying for the result set were inserted or
updated by someone else

Acceptable for many applications

Example:

select * from staff where id between 50 and 300
insert into staff values(111,'me',20,'boss',0,99999,99999)

select * from staff where id between 50 and 300
User 2

User 1

Solution to Concurrency Problems

Isolate your application from concurrent application by
locking the data your application reads or modifies

DB2 uses row-level locking by default.

Rationale of locking:
Allow as much concurrent access to data as possible and at the same time
Guarantee as much data integrity as necessary.

Through explicit locking
Only two possibilities:

SELECT ... FOR UPDATE
LOCK TABLE ...

The user or application programmer is responsible

Through implicit locking with isolation levels
More possibilities (4 isolation levels)
DB2 is responsible

Isolating Concurrent Applications

Isolation Level

Relevant when an application reads data.

Isolation protects the data you read from someone else
updating it.

Isolation level decides:
How much of the data you read is protected
How long the data you read is protected

No impact on the locks and the lock duration required for
changing data through UPDATEs, INSERTs, DELETEs.

Isolation Levels

How much data integrity do you need?
Choose the appropriate isolation level...

Repeatable Read (RR):
No change of rows retrieved until the LUW ends.

This can be much more than what is returned to your application!
No change of answer set until the LUW ends.
This means that no rows can be added to the answer set while the LUW is still active.

Read Stability (RS):
No change of rows which have been read until the LUW ends.
The answer set can change (grow)!

Cursor Stability (CS):
The row to which the cursor points cannot be changed.

Careful: Do you really know to which row your cursor points?

Uncommitted Read (UR):
Committed and uncommitted data can be read with read-only cursors. Other cursors: same as
CS!
Data which has been read can be changed.

Isolation Level Comparison

RR for User 1: User 2 waits until User 1 commits, User 1 get same result for both SELECTs
RS for User 1: User 2 completes, User 1 sees inserted row with 2nd SELECT

select * from staff where id between 50 and 300
insert into staff values(111,'me',20,'boss',0,99999,99999)

select * from staff where id between 50 and 300 User 2

Do you need repeatable results?
User 1

RR for User 1: User 2 waits until User 1 commits, for all depts: avg = sum/count
RS for User 1: User 2 completes, for dept 20: avg IS NOT equal to sum/count

Do you use column functions?
insert into dept_size
 (select dept, count(id) from staff
 where id between 50 and 300 group by dept)

insert into staff values(111,'me',20,'boss',0,99999,99999)
insert into people_costs (
 select dept, sum(salary), sum(comm) from staff
 where id between 50 and 300 group by dept)

User 2

User 1

RR for User 1: User 2 waits until User 1 commits although id=160 is not in the result set

RS for User 1: User 2 completes

select * from staff where id between 50 and 300 and name like '%il%'
update staff set years=11 where id =160 User 2

Do you need all these locks?
User 1

Repeatable Read vs. Read Stability
RR - RS - CS - UR

RR - RS - CS - UR

Read Stability vs. Cursor Stability

RS for User 1: User 2 waits until User 1 commits, for all depts: avg = sum/count
CS for User 1: User 2 completes, for dept containing id=200 avg IS NOT equal to sum/count

Do you always see the cursor?

update staff set salary=99999 where id=200insert into avg_costs (
 select dept, avg(salary), avg(comm)from staff
 where id between 50 and 300 group by dept)

User 2

insert into people_costs (
 select dept, sum(salary), sum(comm)from staff
 where id between 50 and 300 group by dept)

User 1

RS for User 1: User 2 waits if xxx between 50 and 300
CS for User 1: User 2 completes independent of xxx

declare c1 cursor for select * from staff where id between 50 and 300
 order by salary
open c1, fetch c1, fetch c1, fetch c1

update staff set years = 11 where id = xxx User 2

Do you know where your cursor is?
User 1

update staff set years=99 where id=xxx

Declare c1 cursor for select * from staff where id between 50 and 300
open c1, fetch c1, fetch c1, fetch cl
 update staff set years = 11 where id = xxx

RS for User 1: User 2 waits if xxx <= ID retrieved by last fetch
CS for User 1: User 2 only waits if xxx = ID retrieved by last fetch

User 2

What is locked?
User 1

RR - RS - CS - UR

Cursor Stability vs. Uncommitted Read

declare c1 cursor for select * from staff
where id between 50 and 300 order by salary desc
open c1
fetch c1
insert into high_costs (select id, current date, salary, comm from staff
where id=xxx)
fetch
insert
fetch
insert
...
commit

update staff set salary = 22222 where id=200

If ID = 200 is amongst fetched rows, then...

... CS for User 1: User 1 waits until rollback complete, inserted data is consistent

... UR for User 1: User 1 does not wait, inserted data is inconsistent

User 2

Don't save uncommitted data!

rollback User 2

User 1

Isolation Level Summary

 Phenomenon

Isolation Level

Access to
Uncommitted
Data (Dirty
Read)

Nonrepeatable
Reads

Phantom Read
Phenomenon

Repeatable
Read (RR)

Not Possible Not Possible Not Possible

Read Stability
(RS) Not Possible Not Possible Possible

Cursor Stability
(CS) Not Possible Possible Possible

Uncommitted
Read (UR)

Possible Possible Possible

Compiled language:
ISOLATION option of PREP or BIND commands
PREP or BIND APIs

Call Level Interface
db2cli.ini, TXNISOLATION
SQLSetConnectAttr, SQL_ATTR_TXN_ISOLATION
SQLSetStmtAttr, SQL_ATTR_TXN_ISOLATION

Command line processor:
CHANGE ISOLATION LEVEL command.

Default is cursor stability.

How to Set the Isolation Level

Attributes of Locks

Object
The resource being locked
Explicitly lockable: tables
Implicitly by database manager: rows, tables, table spaces, internal objects

Duration
Length of time a lock is held
Affected by isolation levels
Affected by DML

Mode
Type of access allowed for the lock owner as well as the type of access permitted for concurrent users of
the locked object

UDB using "next key locking".

So let's define:
Given two rows A and B.
Assume there is an index where the key of row B is
the next key for the key of row A.
Then A is called preceding B
and B is called adjacent to A.

A Definition

X (Exclusive)
obtained on a row when row is updated or deleted
obtained when a row is inserted, converted to W, when index entries have been created
lock owner can read and change locked row
concurrent LUWs can not change locked row
concurrent LUWs can not insert preceding rows
concurrent LUWs can not read locked row except with isolation UR

W (Weak Exclusive)
obtained when a row is inserted after index entries have been created and X lock is released
same as X locks except that concurrent LUWs can insert preceding rows

NX (Next Key Exclusive)
obtained on adjacent rows during index update when a row is deleted from a table
lock owner can read locked row
lock owner can only change the row after the NX lock has been converted to a higher lock
same as X lock except that it the row can be read by concurrent LUWs using RS, CS, UR

NW (Next Key Weak Exclusive)
obtained on adjacent rows during index update when a row is inserted into a table
lock owner can read locked row
lock owner can only change the row after the NW lock has been converted to a higher lock
same as NX except that the insert is not put in wait by adjacent rows inserted by other LUWs

Exclusive locks

Exclusive locks are normally held until LUW ends!

U (Update)
Obtained on a cursor with FOR UPDATE clause when it moves to a row
Lock owner can read locked row
Lock owner can get lock upgraded if he wants to update the row
Concurrent LUWs can not change locked row
Concurrent LUWs can not delete or insert preceding rows
Concurrent LUWs can read locked but not with a cursor with FOR UPDATE

Update Row Locks

Lock duration depends on isolation level !

S (Share)
obtained by SELECTs
concurrent LUWs can read, but not change, the locked data
concurrent LUWs can not delete or insert rows which precede the locked row
the lock owner can only change the data after the S lock has been converted to a higher lock

NS (Next RID Share)
similar to S lock except that concurrent LUWs can delete and insert rows which precede the locked row
obtained by SELECTs in place of S locks for RS and CS isolation

Shared Row Locks

Lock duration depends on isolation level !

A Bit on Cursors

Cursors can be read-only. This is the case if the cursor
is declared with FOR READ ONLY clause
contains ORDER BY, GROUP BY, HAVING, DISTINCT clauses
includes UNION, EXCEPT, INTERSECT operators
is based on a join, nested or common table expression
contains derived columns in the select list

You can not use UPDATE and DELETE ... WHERE CURRENT OF......

Cursors can be deletable (updateable). This is the case if the cursor
is declared with FOR UPDATE CLAUSE
is not read-only because of one of the above conditions

You can use UPDATE and DELETE ... WHERE CURRENT OF......

Cursors can be ambiguous. This is the case if the cursor
has no FOR READ ONLY and no FOR UPDATE clause
is not read-only because of one of the above conditions

Considered read-only if BLOCKING bind option is ALL

S locks

S locks,
U locks,

X locks

Row Locks: Compatibility

NS S U NX X NW W

NS yes yes yes yes no yes no

S yes yes yes no no no no

U yes yes no no no no no

NX yes no no no no no no

X no no no no no no no

NW yes no no no no no yes

W no no no no no yes no

Lock Held
L
o
c
k

r
e
q
u
e
s
t
e
d

Row locks can be escalated to table locks:
S (Share), U (Update), X (Exclusive)

In addition there are special table locks:
IS (Intent Share):
Indicates that an application holds S locks on rows in the table
IX (Intent Exclusive):
Indicates that an application holds X locks on rows in the table
SIX (Share with Intent Exclusive):
Appl. needs S on table but X on rows

Plus
Z (Superexclusive):
For table administration (alter,drop, reorg...)

Table Locks

Explicitly
LOCK TABLE IN SHARE MODE
LOCK TABLE IN EXCLUSIVE MODE

Implicitly through the locking process
Intent locks on tables when rows in the table are locked

Full locks (S, U, X) instead of row locks, when the whole table
is accessed, for example in a table scan

Through escalation (see below)

Table locks can be obtained ...

Intent Locks: What for?

Assume application A runs with isolation RS and reads many
rows in a table

It holds
Many shared locks on rows
One IS lock on the table.

Assume application B wants to alter the table
It requests a Z lock on the table.

Check one lock only:
Z is incompatible with IS.
Application B waits until IS on table is released.

No need to check all the row locks!

Lock Duration

Exclusive locks are (normally) held until end of LUW

Duration of read locks depends on
Isolation level
RR and RS: until end of LUW
CS: until cursor is moved off the row

Coding
CLOSE CURSOR WITH RELEASE

Normally no locks are held across LUW boundary.
Exception: Cursor WITH HOLD

IS or IX is held until cursor is closed

Lock Conversion

Within any LUW a process can only have one lock on a data
object.

Locks are hierarchical!
Conversion occurs when lower lock is held and a higher lock is needed.
If I hold an S lock on a row and I request a U lock
The S lock is converted to U
If I hold an U lock on a row and I request a X lock
The U lock is converted to X

Locks are kept in lock lists

Lock list entries occupy storage (32 or 64 bytes)
Storage for lock list is a DB configuration parameter (locklist - number of 4K pages)
Storage used by individual application can be limited by DB configuration parameter
(maxlocks - % of locklist per application)

If maxlocks is exceeded
Lock escalation
Lots of row locks are replaced by one table lock!

Lock Escalation

Deadlock Detection

If two applications run into a deadlock they would wait until
doomsday.

Asynchronous background process to detect deadlocks
The time between activation is a DB configuration parameter (dlchktime - millisecs.)

If deadlock is detected:
One of the processes is rolled back
Its locks are freed
The other process can get the locks requested.

Lock Time-out

Even without a deadlock an applications can make
other wait for a long time.

Typically: coffee breaks during LUWs spanning terminal I/O!

Locks tend to accumulate:

Appl. 1 waits on appl. 2 which waits on appl.3
which waits on appl 4...

To prevent long waits
Maximum time an application waits for a lock is a DB configuration parameter
(locktimeout - secs.)

Unfortunately the innocent are punished!

Summary

Locks protect your data.

Locks decrease concurrency.

You can maximise concurrency
without compromising protection:

Design your application with locking in mind
Use short LUWs
Use the right isolation level
Use RELEASE when you close the cursor
Setup DB configuration parameters.

