
Platform: z/OS and OS/390

z/OS and OS/390 Application Development

DB2, Java and Design for
High Performance
John J. Campbell
Senior Consultant IT Specialist
DB2 for z/OS and OS/390 Development
IBM Silicon Valley Lab

Session: D13

Thursday 16th May 2002 at 12:30am

Overview about JDBC

SQLJ versus JDBC

Design Guidelines for Application

Environment Tuning Hints

Performance Measurements

Agenda

Disclaimer
The information contained in this document has not been submitted to any formal
IBM review and is distributed on an "As Is" basis without any warranty either
express or implied. The use of this information is a customer responsibility.

The measurement results presented here were run in a controlled laboratory
environment using specific workloads. While the information here has been
reviewed by IBM personnel for accuracy, there is no guarantee that the same or
similar results will be obtained elsewhere. Performance results depend upon the
workload and the environment. Customers attempting to adapt this data to their
own environments do so at their own risk.

In addition, the materials in this document may be subject to enhancements or
Programming Temporary Fixes (PTFs) subsequent to the level used in this study.

A standard Java API for executing SQL statements
JDBC API offers portability across platforms and database systems

Overview about JDBC

JDBC
Driver

Database

Driver
Manager

Java
Application

Basic Tasks of a JDBC Application
Establish a connection with a database
Execute SQL statements
Process the results

Connection con = DriverManager.getConnection (

"jdbc:db2:sample", "login", "password");

PreparedStatement stmt = con.prepareStatement(

"SELECT a, b, c FROM Table1");

ResultSet rs = stmt.executeQuery();

while (rs.next()) {

int x = getInt("a");

String s = getString("b");

float f = getDate("c");

}

JDBC Driver Types

Type 1

DB Client Lib

ODBC DB Client Lib

JDBC-ODBC
Bridge Driver

Partial Java
JDBC Driver

JDBC Driver
Manager or

DataSourceObject

JDBC API

Java
Application

DatabaseDatabase

Type 1Type 1 Type 2

JDBC Driver Types

DB Middleware

Pure Java
JDBC Driver

Pure Java
JDBC Driver

JDBC Driver
Manager or

DataSourceObject

JDBC API

Java Applet/
Application

DatabaseDatabase

Type 3 Type 4

DBMS
specific
protocol

DBMS independent protocol

DBMS specific protocol

SQLJ Overview
Static SQL syntax in Java
Potential for wide DBMS vendor acceptance

IBM, Oracle, Sybase, Informix, Tandem...
SQLJ has been accepted by ANSI
and is included in SQL99 standard

JDBC
java.sql.PreparedStatement ps =
 con.prepareStatement("SELECT ADDRESS FROM EMP WHERE NAME=?");
ps.setString(1, name);
java.sql.ResultSet rs = ps.executeQuery();
rs.next();
addr = rs.getString(1);
rs.close();

SQLJ
#sql [con] { SELECT ADDRESS INTO :addr FROM EMP
 WHERE NAME=:name };

SQLJ - Embedded SQL in Java
.SQLJ

file

SQLJ
Translator

.java
file

Profiles
(.ser files)

Customizer
db2profc

Runtime
Environment DB2

Java
Interpreter

.class
files

input
to

input to

input
to

produces

produces

calls

updates

used
by

DB2 package

bind

produces

produces

SQLJ versus JDBC...
Reasons to use SQLJ:

Less complex & more concise than JDBC
For DB2 (with optional customization step)

Better performance (not prepared at run-time)
Users can be authorized to programs, not tables

Optional SQL checking at design-time
Syntax
Type mappings

Reasons you might not use SQLJ:
More steps in build process
Less flexible at run-time

SQLJ and JDBC inter operability
You can mix SQLJ and JDBC in the same application
SQLJ and JDBC can share the same connections
JDBC result sets can be turned into SQLJ iterators, and vice versa

Static SQL is FASTER!
Dynamic SQL Static SQL

Check auth for plan/pkg

Parse SQL statement

Check table/view auth

Calculate access path

Execute statement

Check auth for plan/pkg

Execute statement

Static SQL is FASTER!

Open-4Fetch-Close
4Insert

4 singleton Select

JDBC
SQLJ

Simple SQL Performance

Design Guidelines for Application
Make sure that Java data types match DB2 data types

DB2 Data Type Java Data Type Comment

SMALLINT short,boolean no direct mapping for bit in DB2

INTEGER int

REAL float single precision

FLOAT, DOUBLE double double precision

DECIMAL(p,s),
NUMERIC(p,s)

java.math.bigDecimal with p=precision,s=scale
keeps scale and precision in Java

CHAR, VARCHAR,
GRAPHIC,VARGRAPHIC

String

CHAR, VARCHAR
 FOR BIT DATA

byte[]

TIME java.sql.Time

DATE java.sql.Date

TIMESTAMP java.sql.Timestamp

Design Guidelines for Application...

ge
tS

ho
rt

()

ge
tIn

t()

ge
tF

lo
at

()

ge
tD

ou
bl

e(
)

ge
tB

oo
le

an
()

ge
tD

at
e(

)

ge
tT

im
e(

)

ge
tT

im
eS

ta
m

p

ge
tB

ig
D

ec
im

al

SB
C

S

ge
tS

tr
in

g(
) c

ha

ge
tS

tr
in

g(
) v

ar

0

5

10

15

20

25
tim

es
Relative Cost of getxxx() Processing

Design Guidelines for Application...

SM
A

LL
IN

T

IN
TE

G
ER

R
EA

L

D
O

U
B

LE

D
A

TE

C
H

A
R

(6
)

VA
R

C
H

A
R

(1
0)

TI
M

E

TI
M

ES
TA

M
P

N
U

M
ER

IC
(1

0,
3)

DB2 Datatype

0
100
200
300
400
500
600
700

Pe
rc

en
t

CPU

Overhead getString() compared to matching getxxx() method

Only select and update columns as necessary
A Java object is created for every retrieved column.

Store numbers as numbers
Conversion from EBCDIC/ASCII to Unicode required
for Character data
Numbers are not dependent on encoding schema

Turn autocommit off
Example: conn.setAutoCommit(false);
The default is on,
forces a commit after every single SQL statement

Design Guidelines for Application...

Design Guidelines for Application...
Use JDBC DataSource connection pooling

"signon" support to reuse DB2 connection threads

Keeps JDBC connection objects

Example of DataSource Definition
//executed only once by DBA
 ds = new com.ibm.db2.jcc.DB2DataSource();
 ds.setDatabaseName("TESTDB");

Example of Connection Pooling
//get connection from pool
Connection Conn1 = ds.getConnection("user","password");

// Turn off auto commit default
 Conn1.setAutoCommit(false);

....

 Conn1.close();

Design Guidelines for Application...
DB2 datatype CHAR vs. VARCHAR in
database design

Usage of CHAR
requires use of Java trim() function to
eliminate the trailing blanks
higher CPU cost for Java applications
non-Java applications are not affected

Usage of VARCHAR
easier for Java application
somewhat higher CPU cost "in DB2"
all applications are effected

Design Guidelines - JDBC

Release Resources

Close ResultSets
otherwise running out of available cursor

Close PreparedStatements
otherwise running out of available cursor
closing ResultSets is not sufficient

Close CallableStatements
otherwise running out of available call sections

Use db2genJDBC
to adjust required JDBC resources

Design Guidelines - SQLJ

Customize SQLJ serialized profile with
online checking

called by: db2profc ... -online=<db2_location_name>

without customization -
SQLJ application is executed dynamically

online checking
access DB2 catalog to check
SQLJ-supported compatibility/convertability
determines the length of string columns

Use explicit connection context objects
If connection context object is omitted
a default connection context object is used
default connection context is not thread-safe
can create throughput bottle-neck

Design Guidelines - SQLJ...

Example of explicit connection context
// Connection context declaration
#sql context ctx;
...
//get context
myconn=new ctx(Conn1);
...
//use context in SQL
#sql [myconn] {set transaction isolation level read committed};
...
#sql [myconn] cursor001 = {SELECT FKEY,FSMALLINT,FINT

FROM WRKTB01 WHERE FKEY >= :wfkey};
...
//close context but keep database connection
myconn.close(ConnectionContext.KEEP_CONNECTION);

w/ explicit context
w/ default context

0

10

20

30

40
Trans./s

Use positioned iterators
Named iterator uses positioned iterator
under the cover plus name hashing

Design Guidelines - SQLJ...

Example of Positioned Iterator
// Positioned Iterator
#sql iterator TestCase001(short, Time, BigDecimal);
....
short wfkeycr;
Time wftime;
BigDecimal wfnum;
...
 #sql [myconn] cursor001 = {SELECT FKEY, FTIME, FNUM
 FROM WRKTB01};

#sql {FETCH :cursor001 INTO :wfkeycr, :wftime, :wfnum};

Example of Named Iterator
// Named Iterator
#sql iterator TestCase001A (short Fkeycr,
 Time Ftime, BigDecimal Fnum);
....
short wfkeycr;
Time wftime;
BigDecimal wfnum;
...
#sql [myconn] cursor002 = {SELECT FKEY, FTIME, FNUM
 FROM WRKTB01};

while (cursor002.next()) {

wfkeycr = cursor002.Fkeycr();
wftime = cursor002.Ftime();
wfnum = cursor002.Fnum();

}

What do the Acronyms?

JSP
JNDI
EJB
RMI
XML
LDAP
HTTP

Use Current System Levels

Hardware support for IEEE floating point
in G5 and higher S/390 processors
Use OS/390 V2R6 and above to exploit

Keep current with JDK releases
still major performance improvements
in each release or PTF

Keep current with JDBC driver
major performance enhancements based
on DB2 V7, JDBC 2.0 driver

Tune your JVM heap
Default heap size is

ms = 1M, mx = 8M
Values between 300M and 400M are common
in a production environment
Set ms and mx to an equal value

Set environment variable
_cee_runopts = "heappools(on)"

Environment Tuning Hints

ms=1M,mx=700M
ms=700M,mx=700M

ms=200M,mx=200M

Trans/sec

Heap Size Study

Recommended DB2 BIND options
DYNAMICRULES(BIND)
table access privileges of the binder used
during program execution
QUALIFIER
creator (schema name) for unqualified tables
and views

Use dynamic SQL statement caching
Avoids full cost of preparing SQL
Processing cost close to static SQL
Recommended for JDBC/SQLJ
Cursor controlled update/delete executed
dynamically in SQLJ

Environment Tuning Hints

Context switching performance improvement

Lower cost for column processing

fewer JNI crossings
(allows JIT to be more effective)

Presume abort logging in RRS Attach

JVM improvements:
"intrinsics" for inline JDBC column movement
"intrinsics" for code page conversion
JDK 1.3 JNI callback performance improvements

SQLJ performance improvements for
UPDATE or DELETE WHERE CURRENT OF

SQLJ/JDBC Driver Improvements

SQLJ/JDBC Performance Study

1. run
WAS PTF11 JDBC Drop 11*

CACHEDYN=YES**
SQLJ

connection.close
statement.close
resultset.close
next (fetch)
execute query
preparestatement
getconnection

* JDBC 2.0 connection pooling
** Hit in dynamic statement cache

DB2 V7 Java Column Processing Cost
Get function V6 Delta
getString (char)** -91%
getString (varchar)** -91%
getBigDecimal -66%
getInt -8%
getShort -27%
getDate -50%
getTime -51%
getTimestamp -64%
getDouble -6%
getFloat -6%
getBoolean -31%

Shipped via PQ48383

** Measured code pages
 other than 500 and 37

DB2 V7 Java Column Processing Cost...
Set function V6 Delta
setString (char)** -92%
setString (varchar)** -92%
setBigDecimal -3%
setInt -1%
setShort -23%
setDate -4%
setTime -4%
setTimestamp -2%
setDouble -37%
setFloat -28%
setBoolean -15%

Shipped via PQ48383

** Measured code pages
 other than 500 and 37

Use SQLJ for performance
critical applications

Stay current on maintenance

Implement given guidelines

Summary

International DB2 Users Group

Session Title: DB2, Java and Design for High Performance
Session #: D13

John J. Campbell
DB2 for z/OS and OS/390 Development

campbelj@uk.ibm.com

