U-Locks

The most frequent reason for deadlocks
is conversion from S-locks to X-locks.

Suppose T'1 has an S-lock on A and T2
has an S-lock on A and T'1 requests an X-
lock on A and T2 requests an X-lock on
A. You get a deadlock. U-locks solve this
problem.

U-locks would be used in update state-
ments where the system must read each
record first to see if it satisfies a “where”
clause. Would U-locks be used in a trans-
action where a record is read in an SQL
Select statement first, and then later up-
dated in an Update Statement?

U-Locks
Salzberg’s U-locks:

Clearing up the discussion on U locks.
Do not pay attention to what is in the
text on U locks. It does not make sense.
Here is the story: A U-lock is exactly the
same as an S-lock in its compatibility. The
only new information to remember is that
two U-locks are not compatible with each
other. U is compatible with S and IS.

When a U lock wants to convert to an
X-lock, it must obtain the necessary new
higher granularity locks first. And replace
page 416 with the following:

Partial Order on Locks
Partial order on locks:

e[S <S(orU)

o [S < IX

o [X < SIX

oS (or U) < SIX

o SIX < X

If A < B then any lock L which conflicts
with A conflicts with B.

Compatability Matrix for locks

IS IX S U SIX X

IS yes | yes yes yes yes no

IX | ves | yes no no no no

S yes no yes yes no no

U | yes no yes no no no

SIX yes no no no no no

X no no no no no no
partial order of locks X
il

7

Rules for requesting locks:

e Obtain an IS lock or stronger on all an-
cestors before obtaining an S or IS lock
on descendents in the object hierarchy:.
Reason: IS prevents X.

e Obtain a IX lock or stronger on all an-
cestors before obtaining an X, IX or
SIX or U lock on descendents in the
object hierarchy. Reason: IX prevents
S (or U). (This will prevent a deadlock
if a lower granularity and higher gran-
ularity U are both requested.)

S and X locks create implicit locks on
objects lower in the object hierarchy. If a
file is S-locked, it is the same as if every
record in the file were S-locked. If a file is
X-locked, it is the same as if every record
were X-locked.

DAG locks
A little on DAG locks. What if there are

two indexes? (This part uses key-range
locks also.)

Example: T'1 wants to update E and X-
locks [E G) as before. T2 wants to read
the record with socsecno = 333-33-3444.
But this record has alphakey = E. It T2
does not also locking the alphakey, or T1
does not also lock the socsecno, there is a
problem.

DAG locks continued

Answer: To update (or insert or delete),
X-lock all paths through indexes and to
read, set an S lock on one of the paths.

Problem: What about scanning the ta-
ble without using an index? (ok if T1 IX-
locks the table and the scanner tries to get
an S lock on the table.)

Another problem: suppose there are ten
indexes and there are 100 records with al-
phakey = E. Answer: for each record up-
dated, inserted or deleted, all indexes must
be key-range locked.

Instead of DAG locks

you can lock a record ID (RID or pri-
mary key) when it is read or updated, even
if you look it up by a secondary key. This
will cause the correct conflicts. This is
probably what systems do when they lock
records. You still need the table lock or
the key-range locks to prevent phantoms.

Locking Heuristics (sec 7.9, text)

e lock conversion T1 has an S-lock or
a U-lock (compatible with S but not
with X) and wants to convert to an X-
lock. T1 keeps the S-lock and requests
the X-lock. (We will see T1 goes to
front of lock-wait queue for a lock con-
version request)

e lock escalation When a transaction
has requested hundreds of record-granularity
locks on the same table, most systems
will escalate the lock to a table-level
lock, dropping all the record-level locks.

e lock de-escalation Some systems be-
gin by making all locks table-granularity
locks. Then if there is a conflicting re-
quest, the lock is de-escalated to record-
level locks. Transactions must main-
tain lists of the locks they would have
requested if record-level locks were used.

10

Nested Transaction Locks (sec 7.10)

Studying how nested transaction locks
work explains what nested transactions do.
The semantics of nesting can be derived
from the mechanics of locking.

Sequential nested transactions are im-
plemented in many systems, such as DB2
and Sybase. Sybase has nested pairs of
begin and commit transaction statements.
Only the outermost commit commits the
transaction. The inner pairs just keep track
of the nesting level. This nesting has no
effect on locks.

If you have savepoints and rollback to
a savepoint, the locks acquired after the
savepoint are released (after the updates
made since the savepoint are UNDONE).

11

Parallel Nesting

Parallel nested transactions allow any child
to inherit a lock from a parent (but not
from a sibling). If a child subtransaction
rolls back, the inherited locks are returned
to the parent and the acquired locks are
dropped. If a child commits, both inher-
ited and acquired locks go to the parent.
If a sibling wants a lock another sibling
has, it has to wait. Most systems do not
support parallel nesting.

12

Deadlocks

The order transactions request locks can-
not be predicted, so deadlocks are always
possible. Most systems use timeout to re-
solve possible deadlocks. (If you have to
wait a long time, you are aborted.)

An alternative is to construct a waits-for
graph. Transactions which are waiting are
nodes and there is an edge from T1 to T2
if T'1 is waiting for T2. If there is a cycle
in the graph, there is a deadlock. The
transaction with the shortest number of
log records might be chosen to be aborted.

Deadlock is rare.

Only timeout is used for distributed dead-
lock.

13

The Convoy Phenomenon

Suppose T1 is running in a high-priority
process and T2 has a low priority. When
doing process switches, T'1 should be cho-
sen more often than T2. But suppose T2
acquires a lock on object X. T'1 will have
to wait for X.

Suppose T3 and T4 are also high prior-
ity and wait for X. When T2 finally gets
some time, (because higher priority pro-
cesses are no longer ready to run because
they are waiting) T2 may run, release the
lock and get swapped out and then T1
runs, releases the lock and goes to the end
of the queue. T1, T3, T4 cycle forever.
(The lock in the text example is the end-
of-log lock, which must be acquired for
each update.) Solution: don’t use a queue
for hot spots lock waiting, or spin rather
than wait, or don’t allow lock holders to
be pre-empted.

14

Mixed Multiversion Concurrency

Mixed multiversion concurrency: Read-
only transactions read the most recent ver-
sion valid before their begin time. Read/Write
transactions keep locks. and put commit-
time timestamps on the records they up-
date (or the TID and system keeps table
correlating TID and commit time).

DEC’s Rdb used this. Most systems do

not.

A new transaction copies a TID vector:
TIDs increase monotonically, so all you
need is the TID of the earliest non-committed
transaction T1 (All TIDs less than T1s
are from committed transactions) and the
TIDs of any transactions which have al-
ready committed and are greater than T1’s

TID.

15

Snapshot Isolation (from Beren-
son et al.)

e Readers can read data from the most
recent version committed before the be-
gin time (start timestamp)

e Updating transactions: When T1 is ready
to commit, if gets a commit timestamp.
Success if no other transaction T2 with
commit timestamp in T1’s (start, com-
mit) interval wrote data that T1 also
wrote (first committer) Otherwise T1
is aborted.

No locks. But also it does not guarantee
isolation.

16

Examples for SI

T1 moves $40 from x to y; T2 reads an
earlier version

H1SI: r1[x0=50] wil[x1=10]
r2[x0=50] r2 [y0=50] c2
r1[y0=50] wil[y1=90] c1

Here, T2<<< T1 and this is equivalent
to a serial history. So we avoid using locks
(we keep track of when transactions com-
mit) and we get a consistent view.

ASA: r1[x]...w2[x]...w2[y] c2
rily] (cl or al)

Snapshot Isolation does not allow T'1 to
read the update T2 made in ASA, so this
kind of inconsistent read is prevented. ASA

is allowed in READ COMMITTED.

17

H5: r1[x=50]r1[y=50]r2[x=50]r2[y=50]
wlly= -40] w2[x= -40] cl c2

H5 is not equivalent to a serial history.
T1 and T2 write different items and nei-
ther reads the update of the other. But
they may both be written to preserve the
constraint x + y positive. Interleaved like
this, they do not preserve this constraint.

A5B: ri[x]...r2[y]l...
wllyl...w2[x] (cl and c2 occur)

Snapshot Isolation does not prevent A5B
so it allows non-serializable histories.

)

18

Oracle???

According to the 1989 Oracle manual
cited by Berenson, Oracle read consistency
reads the most recent committed version.
(It does not depend on the start time of
the reading transaction.) This gives unre-
peatable reads. It also allows AbA.

19

Field calls

1. Check predicate: are there enough milk
bottles so I can buy one? Unlock milk,
but now milk record is in the database
cache.

2. Write REDO log record in memory, but
not in log cache.

3. At commit time, share lock all predi-
cates and x-lock all transforms.

4. If ok, perform transforms, move log records
to log and unlock

5. If not ok, abort (no updates to be made).

Locks held only for a short time (I/Os
and Log writes have already been performed).

20

Fiscrow Locks

With each pending update, keep range
of values: highest and lowest values if pend-
ing updates succeed or fail.

Example: current value m, T1 would
subtract 7 and T2 would add 8. The range
of possible values is (m-7, m+38).

New field calls must check that if they
succeeded, the range would not be illegal
(less than 0 milk bottles, for example).

21

“Optimistic Concurrency”

T1 keeps a list of updates to be made. It
any other transaction has changed one of
the objects since it was read, T'1 aborts.
(Look at list of updates committed since
T1 started.) What Gray says: Predicate
is value was the same as the one read.

22

Adya et al.

Want to allow
HP1’:

r1[x=50]wl[x=10]r2[x=10]clc2

This is a serializable schedule that is not
possible if long locks are kept. T2 reads
an uncommitted update. But both trans-
actions commit. What if T'1 had aborted
after T2 read the update? In an “opti-
mistic” concurrency control system, the
system would abort transactions that read
dirty data. This is called cascading abort.

23

Adya et al.

this paper proposes isolation level defi-
nitions which could be used for optimistic
systems as well as for locking systems. It
does this by not allowing certain cycles
in graphs of committed transactions. It
leaves it to the implementor to decide how
to prevent such cycles. One way is to
abort a transaction if committing it would
create a cycle. Remember that aborts are
at least 100 times more expensive than
lock waits. Lock waits are on the order of
1000 to 2000 instructions. Aborts are on
the order of 100,000 or more instructions.
None of the major relational systems use
optimistic concurrency.

24

relationship of locking to Adya pa-
per

e long write locks prevent ww cycles in
committed transactions and prevent

wllx]w2[x]clc2

which is serializable

e long write locks and short read locks
prevent cycles with wr or ww edges and
prevent

wllx]r2[x]clc?2

which is serializable

e long write locks and long read locks
prevent cycles which contain ww, wr
and rw edges and prevent

r1[x]Jw2[x]clc2

which is serializable

25

Notes from Adya Liskov, Gruber
and Maheshwari SIGMOD 1995

A scenario where optimistic concurrency
might be a good idea, but even here the
authors say it does not work well if there
are a lot of conflicts (which would produce
a lot of aborts).

In this paper, a distributed object ori-
ented database is described.

e primary copy is at server, clients fetch
copies of objects

e incoming commit requests are checked
against committed transactions they could
have conflicted with. If there are prob-
lems, requester is aborted.

e after T commits, the server sends inval-
idation messages to clients other than
C that are caching objects installed by
T. It any transaction has read this now
changed item, it is aborted.

26

This is just a part of the algorithm. The
claim is that if there few conflicts, not set-
ting locks saves enough to offset the occa-
sional aborts.

27

“Timestamp Concurrency”

T1 reads the timestamp. If the times-
tamp changes at the second predicate check,
it aborts. If not, it puts its own times-
tamp on the record (even if it makes no
update). Locks are used at the second
predicate check.

28

Time domain addressing

Time domain addressing. T'1 is assigned
a timestamp when it begins. It puts the
timestamp on each object it reads. If it
reads an object with a timestamp greater
than its own, it reads a previous version.
If it reads an object with a timestamp less
than its own, it writes the same value with
its timestamp. If T'1 is going to write, T1’s
timestamp must be higher than the most
recent timestamp on the record. If not, T'1
aborts. Remember aborts are 100 times
more expensive than waits. Also, reads
become writes.

29

Conclusions

If you do any kind of “optimistic” con-
currency, you have to keep track of which
transactions read and write which items
and check things at the end of the trans-
action.

e If there are very few conflicts, you pay
for keeping track, probably about the
same as setting unconflicting locks

e If there are many conflicts, you pay by
aborting instead of waiting

30

e Only mixed multiversion concurrency
(no locks for read-only transactions) seems
to have been implemented in relational
systems. Here, you need an extra col-
umn on each record for the TID of the
last updater. You also keep a few ex-
tra copies of recently updated records
for transactions whose begin time is be-
fore the commit time of the updating
TID. But this has benefits for making
consistent dumps without locking, and
other large read-only operations. This
system uses write-locks for read /write
transactions.

31

