
U-LocksThe most frequent reason for deadlocksis conversion from S-locks to X-locks.Suppose T1 has an S-lock on A and T2has an S-lock on A and T1 requests an X-lock on A and T2 requests an X-lock onA. You get a deadlock. U-locks solve thisproblem.U-locks would be used in update state-ments where the system must read eachrecord �rst to see if it satis�es a \where"clause. Would U-locks be used in a trans-action where a record is read in an SQLSelect statement �rst, and then later up-dated in an Update Statement?

1

U-LocksSalzberg's U-locks:Clearing up the discussion on U locks.Do not pay attention to what is in thetext on U locks. It does not make sense.Here is the story: AU-lock is exactly thesame as an S-lock in its compatibility. Theonly new information to remember is thattwo U-locks are not compatible with eachother. U is compatible with S and IS.When a U lock wants to convert to anX-lock, it must obtain the necessary newhigher granularity locks �rst. And replacepage 416 with the following:

2

Partial Order on LocksPartial order on locks:� IS < S (or U)� IS < IX� IX < SIX� S (or U) < SIX� SIX < XIfA < B then any lock Lwhich con
ictswith A con
icts with B.

3

IS

S
U

X

IX

SIX

yes

no

no no no

no

no

no

no

noyesyes

yes

yesyes

yesyes

IS

IS

S

S

U

U

X

X

IX

IX SIX

SIX

yes

yes

yes

yes

yes

no no

no no no

no

nonono

no

no

no

nono

partial order of locks

Compatability Matrix for locks

4

Rules for requesting locks:� Obtain an IS lock or stronger on all an-cestors before obtaining an S or IS lockon descendents in the object hierarchy.Reason: IS prevents X.� Obtain a IX lock or stronger on all an-cestors before obtaining an X, IX orSIX or U lock on descendents in theobject hierarchy. Reason: IX preventsS (or U). (This will prevent a deadlockif a lower granularity and higher gran-ularity U are both requested.)S and X locks create implicit locks onobjects lower in the object hierarchy. If a�le is S-locked, it is the same as if everyrecord in the �le were S-locked. If a �le isX-locked, it is the same as if every recordwere X-locked.
5

DAG locksA little on DAG locks. What if there aretwo indexes? (This part uses key-rangelocks also.)Example: T1 wants to update E and X-locks [E G) as before. T2 wants to readthe record with socsecno = 333-33-3444.But this record has alphakey = E. If T2does not also locking the alphakey, or T1does not also lock the socsecno, there is aproblem.

6

DAG locks continuedAnswer: To update (or insert or delete),X-lock all paths through indexes and toread, set an S lock on one of the paths.Problem: What about scanning the ta-ble without using an index? (ok if T1 IX-locks the table and the scanner tries to getan S lock on the table.)Another problem: suppose there are tenindexes and there are 100 records with al-phakey = E. Answer: for each record up-dated, inserted or deleted, all indexes mustbe key-range locked.

7

Instead of DAG locksyou can lock a record ID (RID or pri-mary key) when it is read or updated, evenif you look it up by a secondary key. Thiswill cause the correct con
icts. This isprobably what systems do when they lockrecords. You still need the table lock orthe key-range locks to prevent phantoms.

8

Locking Heuristics (sec 7.9, text)� lock conversion T1 has an S-lock ora U-lock (compatible with S but notwith X) and wants to convert to an X-lock. T1 keeps the S-lock and requeststhe X-lock. (We will see T1 goes tofront of lock-wait queue for a lock con-version request)� lock escalation When a transactionhas requested hundreds of record-granularitylocks on the same table, most systemswill escalate the lock to a table-levellock, dropping all the record-level locks.

9

� lock de-escalation Some systems be-gin by making all locks table-granularitylocks. Then if there is a con
icting re-quest, the lock is de-escalated to record-level locks. Transactions must main-tain lists of the locks they would haverequested if record-level locks were used.

10

Nested Transaction Locks (sec 7.10)Studying how nested transaction lockswork explains what nested transactions do.The semantics of nesting can be derivedfrom the mechanics of locking.Sequential nested transactions are im-plemented in many systems, such as DB2and Sybase. Sybase has nested pairs ofbegin and commit transaction statements.Only the outermost commit commits thetransaction. The inner pairs just keep trackof the nesting level. This nesting has noe�ect on locks.If you have savepoints and rollback toa savepoint, the locks acquired after thesavepoint are released (after the updatesmade since the savepoint are UNDONE).
11

Parallel NestingParallel nested transactions allow any childto inherit a lock from a parent (but notfrom a sibling). If a child subtransactionrolls back, the inherited locks are returnedto the parent and the acquired locks aredropped. If a child commits, both inher-ited and acquired locks go to the parent.If a sibling wants a lock another siblinghas, it has to wait. Most systems do notsupport parallel nesting.

12

DeadlocksThe order transactions request locks can-not be predicted, so deadlocks are alwayspossible. Most systems use timeout to re-solve possible deadlocks. (If you have towait a long time, you are aborted.)An alternative is to construct a waits-forgraph. Transactions which are waiting arenodes and there is an edge from T1 to T2if T1 is waiting for T2. If there is a cyclein the graph, there is a deadlock. Thetransaction with the shortest number oflog records might be chosen to be aborted.Deadlock is rare.Only timeout is used for distributed dead-lock.
13

The Convoy PhenomenonSuppose T1 is running in a high-priorityprocess and T2 has a low priority. Whendoing process switches, T1 should be cho-sen more often than T2. But suppose T2acquires a lock on object X. T1 will haveto wait for X.Suppose T3 and T4 are also high prior-ity and wait for X. When T2 �nally getssome time, (because higher priority pro-cesses are no longer ready to run becausethey are waiting) T2 may run, release thelock and get swapped out and then T1runs, releases the lock and goes to the endof the queue. T1, T3, T4 cycle forever.(The lock in the text example is the end-of-log lock, which must be acquired foreach update.) Solution: don't use a queuefor hot spots lock waiting, or spin ratherthan wait, or don't allow lock holders tobe pre-empted. 14

Mixed Multiversion ConcurrencyMixed multiversion concurrency: Read-only transactions read the most recent ver-sion valid before their begin time. Read/Writetransactions keep locks. and put commit-time timestamps on the records they up-date (or the TID and system keeps tablecorrelating TID and commit time).DEC's Rdb used this. Most systems donot.A new transaction copies a TID vector:TIDs increase monotonically, so all youneed is the TID of the earliest non-committedtransaction T1 (All TIDs less than T1sare from committed transactions) and theTIDs of any transactions which have al-ready committed and are greater than T1'sTID.
15

Snapshot Isolation (from Beren-son et al.)� Readers can read data from the mostrecent version committed before the be-gin time (start timestamp)� Updating transactions: When T1 is readyto commit, if gets a commit timestamp.Success if no other transaction T2 withcommit timestamp in T1's (start, com-mit) interval wrote data that T1 alsowrote (�rst committer) Otherwise T1is aborted.No locks. But also it does not guaranteeisolation.

16

Examples for SIT1 moves $40 from x to y; T2 reads anearlier versionH1SI: r1[x0=50] w1[x1=10]r2[x0=50] r2 [y0=50] c2r1[y0=50] w1[y1=90] c1Here, T2<<< T1 and this is equivalentto a serial history. So we avoid using locks(we keep track of when transactions com-mit) and we get a consistent view.A5A: r1[x]...w2[x]...w2[y] c2r1[y] (c1 or a1)Snapshot Isolation does not allow T1 toread the update T2 made in A5A, so thiskind of inconsistent read is prevented. A5Ais allowed in READ COMMITTED.
17

H5: r1[x=50]r1[y=50]r2[x=50]r2[y=50]w1[y= -40] w2[x= -40] c1 c2H5 is not equivalent to a serial history.T1 and T2 write di�erent items and nei-ther reads the update of the other. Butthey may both be written to preserve theconstraint x + y positive. Interleaved likethis, they do not preserve this constraint.A5B: r1[x]...r2[y]...w1[y]...w2[x] (c1 and c2 occur)Snapshot Isolation does not prevent A5B,so it allows non-serializable histories.

18

Oracle???According to the 1989 Oracle manualcited by Berenson, Oracle read consistencyreads the most recent committed version.(It does not depend on the start time ofthe reading transaction.) This gives unre-peatable reads. It also allows A5A.

19

Field calls1. Check predicate: are there enough milkbottles so I can buy one? Unlock milk,but now milk record is in the databasecache.2. Write REDO log record in memory, butnot in log cache.3. At commit time, share lock all predi-cates and x-lock all transforms.4. If ok, perform transforms, move log recordsto log and unlock5. If not ok, abort (no updates to be made).Locks held only for a short time (I/Osand Log writes have already been performed).
20

Escrow LocksWith each pending update, keep rangeof values: highest and lowest values if pend-ing updates succeed or fail.Example: current value m, T1 wouldsubtract 7 and T2 would add 8. The rangeof possible values is (m-7, m+8).New �eld calls must check that if theysucceeded, the range would not be illegal(less than 0 milk bottles, for example).

21

\Optimistic Concurrency"T1 keeps a list of updates to be made. Ifany other transaction has changed one ofthe objects since it was read, T1 aborts.(Look at list of updates committed sinceT1 started.) What Gray says: Predicateis value was the same as the one read.

22

Adya et al.Want to allowHP1':r1[x=50]w1[x=10]r2[x=10]c1c2This is a serializable schedule that is notpossible if long locks are kept. T2 readsan uncommitted update. But both trans-actions commit. What if T1 had abortedafter T2 read the update? In an \opti-mistic" concurrency control system, thesystem would abort transactions that readdirty data. This is called cascading abort.

23

Adya et al.this paper proposes isolation level de�-nitions which could be used for optimisticsystems as well as for locking systems. Itdoes this by not allowing certain cyclesin graphs of committed transactions. Itleaves it to the implementor to decide howto prevent such cycles. One way is toabort a transaction if committing it wouldcreate a cycle. Remember that aborts areat least 100 times more expensive thanlock waits. Lock waits are on the order of1000 to 2000 instructions. Aborts are onthe order of 100,000 or more instructions.None of the major relational systems useoptimistic concurrency.

24

relationship of locking to Adya pa-per� long write locks prevent ww cycles incommitted transactions and preventw1[x]w2[x]c1c2which is serializable� long write locks and short read locksprevent cycles with wr or ww edges andpreventw1[x]r2[x]c1c2which is serializable� long write locks and long read locksprevent cycles which contain ww, wrand rw edges and preventr1[x]w2[x]c1c2which is serializable
25

Notes from Adya Liskov, Gruberand Maheshwari SIGMOD 1995A scenario where optimistic concurrencymight be a good idea, but even here theauthors say it does not work well if thereare a lot of con
icts (which would producea lot of aborts).In this paper, a distributed object ori-ented database is described.� primary copy is at server, clients fetchcopies of objects� incoming commit requests are checkedagainst committed transactions they couldhave con
icted with. If there are prob-lems, requester is aborted.� after T commits, the server sends inval-idation messages to clients other thanC that are caching objects installed byT. If any transaction has read this nowchanged item, it is aborted.26

This is just a part of the algorithm. Theclaim is that if there few con
icts, not set-ting locks saves enough to o�set the occa-sional aborts.

27

\Timestamp Concurrency"T1 reads the timestamp. If the times-tamp changes at the second predicate check,it aborts. If not, it puts its own times-tamp on the record (even if it makes noupdate). Locks are used at the secondpredicate check.

28

Time domain addressingTime domain addressing. T1 is assigneda timestamp when it begins. It puts thetimestamp on each object it reads. If itreads an object with a timestamp greaterthan its own, it reads a previous version.If it reads an object with a timestamp lessthan its own, it writes the same value withits timestamp. If T1 is going to write, T1'stimestamp must be higher than the mostrecent timestamp on the record. If not, T1aborts. Remember aborts are 100 timesmore expensive than waits. Also, readsbecome writes.

29

ConclusionsIf you do any kind of \optimistic" con-currency, you have to keep track of whichtransactions read and write which itemsand check things at the end of the trans-action.� If there are very few con
icts, you payfor keeping track, probably about thesame as setting uncon
icting locks� If there are many con
icts, you pay byaborting instead of waiting

30

� Only mixed multiversion concurrency(no locks for read-only transactions) seemsto have been implemented in relationalsystems. Here, you need an extra col-umn on each record for the TID of thelast updater. You also keep a few ex-tra copies of recently updated recordsfor transactions whose begin time is be-fore the commit time of the updatingTID. But this has bene�ts for makingconsistent dumps without locking, andother large read-only operations. Thissystem uses write-locks for read/writetransactions.

31

