
A technical discussion of Row Level Locking
August 2002

A Technical Discussion of
Row Level Locking

IBM Software Group
Toronto Laboratory

Introduction

Concurrency has always been an important issue with database systems. As

well, in todays systems the trend is towards self managing of memory to

reduce DBA cost of management. DB2 has designed its locking mechanisms

to address both issues simultaneously. Oracle is claiming that DB2s lock

memory managment mechanism is inferior1. The truth is that Oracle's locking

mechanism is not designed for the high performance servers that are

available today.

How Oracle Manages Locks

Oracle actually stores lock information on the same data page (called a block

in Oracle terminology) that the data rows exist on. On every data and index

page, Oracle has a section of the header called the transaction layer. This

section is variable in size and will grow as more transactions simultaneously

access records on the data page. Every time a transaction accesses a row on a

data page, an entry is put in the Interested Transaction List (ITL) on that

page. For every transaction, 24 bytes on the page are used up for an ITL. As

more transactions access the same data page, the transaction layer grows in

size (using up more disk space for transactional information).

Oracle Data Block (page) Format

A technical discussion of Row Level Locking
Page 1

Contents

1 The way Oracle manages
locks

2 Issues with this locking
mechanism

3 The Way DB2 Manages Locks
4 Conclusions
5 References
5 Notices and Trademarks

Grows as more transactions access this page (does not shrink)

Interested Transaction List (28 bytes + 24 bytes per txn)

Typ Fmt Pad RDBA SCN Base SCN
Wrap Seq Flg

Pad

Row5

Table Directory Row1 Row2 Row3 Row4

Ro
w

 F
la

g

Lo
ck

 B
yt

e

of

 C
ol

s

Cl
us

te
r K

ey

Co
l L

en
gt

h

Da
ta

Co
l L

en
gt

h

Da
ta

Ta
il

Free Space

Cache Layer (20b)

Transaction Layer

Rows

CheckVal

Issues With This Locking Mechanism

Overhead using a disk based locking mechanism

Each ITL uses 24 bytes of disk space. By default each data page has 1 ITL

and each index page has 2 ITL slots reserved. So by default 24 bytes of every

data page (and 48 bytes of every index page) is not usable for user data. In a

more realistic environment where several concurrent transactions are

accessing the same data blocks, it would not be unusual to find 10 ITL slots

on each data page. That's 240 bytes on each data page wasted or 12% of all

data space (assuming 2k page for an OLTP system)

What happens if I have a hot data page or hot table

If a table has a lot of concurrent transactions then it will use up more disk

space for transactions. In many applications there exits a set of hot records or

a hot table. So what happens if you have 1000 concurrent update transactions

on a small table? How do you limit the growth of the transaction layer from

using up all the space on a page? Oracle provides a MAXTRANS parameter

on each table to limit the growth of the transaction layer of the data page.

How does the DBA know what tables will be hot and how much space should

be reserved?

Good question. For peak performance, this type of locking mechanism

requires the DBA to determine how much space on each data page needs to

be set aside for lock information which is dependent on the application. The

transaction layer can grow if more transaction space is required but it does

not automatically shrink. This is also an additional item for DBA's to monitor

to see if pages are becoming too full of ITL slots thus leaving less (or no)

room for new data

What happens if there is no more space on the data page for a new transaction

or you hit MAXTRANS?

If a new transaction cannot allocate space for an ITL, the transaction will go

to sleep. Even if the row that this transaction wants to update is not being

accessed by any other transaction, a lock cannot be acquired because there is

not enough free space on the page to write an ITL (a locking record). Even if

there is lots of free space on other pages in the table, if there is no free space

on this particular page, the transaction must wait. When it wakes up, it looks

to see if there is a free ITL slot. If there is still no space, it goes back to sleep.

A technical discussion of Row Level Locking
Page 2

Highlights

Oracle uses 24bytes of disk
space per transaction per page.

Transactions sleep waiting for
free space.

The problem with this algorithm is that while one transaction is sleeping,

another transaction can come in and get an ITL slot that was made available

while the first transaction was still sleeping. This means that there is no

guarantee that a transaction can acquire the lock it wants and locks are not

allocated to transactions in the order they are requested (i.e. a transaction can

jump in front of another transaction that has been waiting).

How DB2 Manages Locks

DB2 employs a patented2 locking mechanism that stores locks in memory.

Since locks are transient objects that do not require persistence across server

failures, there is no need to write lock information to disk. If there is a

database outage for example, then a database restart does not need to know

what row locks were granted at the time of the crash. This is why memory is a

better resource to use for lock information as you do not need to waste disk

space to store these nonpersistent objects.

The way DB2 works is that every lock requested has a name (known as a

Lock Request Block or LRB). When a lock is requested, that locks LRB is

stored in a memory area known as the lock list. The size of this locklist is

determined by a database configuration parameter called LOCKLIST. By

default, 200k of memory is set aside for locks and the DB2 Performance

Configuration Wizard can assist the DBA in determining an appropriate size

for the locklist given the application type and usage requirements. If multiple

applications try to lock the same record in exclusive mode (for update) then

DB2 creates a linked list of these lock requests (first come first served) in

memory. Multiple transactions may be sharing a lock at the same time, given

that they are both reading the record and not updating it. The linked list of

lock requests contains both transactions using the lock and those transactions

waiting for the lock. When a transaction is waiting on a lock it is actually

waiting on a semaphore (not on a sleep timer that Oracle uses). When the

first transaction on the list releases its lock, it removes itself from the lock

chain and posts a message to the next transaction(s) in the sequence to allow

the waiting transaction(s) to continue and take over ownership of that lock. So

with DB2 a waiting lock request will not be pre-empted by another lock

request, they are processed in the sequence they are requested.

A technical discussion of Row Level Locking
Page 3

Highlights

Memory is a better resource to
use for nonpersistent objects
like locks.

Now what happens if one application starts acquiring an unusually large

number of locks and starts using up too much memory. In this case, DB2 has

an automatic (SMART) algorithm to reduce the memory requirements on the

system. The process is called lock escalation and should be an extremely

infrequent event if a system has sufficient physical memory and is tuned

appropriately. If the LOCKLIST memory area is full or if one application

acquires "too many" locks then DB2 invokes a memory requirement

reduction algorithm known as lock escalation. "Too many" locks is defined by

the DBA using a second configuration parameter called MAXLOCKS.

MAXLOCKS defines the percentage of the LOCKLIST that any one

application can acquire before a lock escalation will take place. By default

MAXLOCKS is set to 22% of the LOCKLIST so by default if one application

acquires more than 22% of the locklist, DB2 will escalate. When a lock

escalation occurs, the application holding the most locks (and therefore using

up the most memory) will convert its row level locks to a table level lock, thus

reducing memory requirements on the system. As well this has the added

advantage that the lock hogging application is no longer required to acquire

row level locks for the table it already has locked and can therefore finish its

work faster and get out of everyone else's way.

Conclusions

As the size of databases moves into the Terabyte range, it is important to

consider disk space utilization and to use disk space wisely. Adding an extra

100 bytes to a page that cannot be used for data but instead is used for locks

may seem like a small amount but when you get into systems that have

millions of data pages, the wasted disk space not only adds up to a lot of

unused space but means real dollars lost and extra dollars spent monitoring

this unnecessary space usage. Using memory for transient and nonpersistent

locking information is a solution that matches well with today's database

environments where servers have a significant amount of memory. As well

the automatic facilities available in DB2 like the Configuration Advisor and

the Lock Escalation Algorithm allow DBAs to utilize the available memory on

the machine while not adding the extra burden of having to reorganize data

to reclaim unused lock space.

A technical discussion of Row Level Locking
Page 4

Highlights

Using memory for transient
and nonpersistent locking
information is a solution that
matches well with today's
database environments where
servers have a significant
amount of memory.

References

1. Oracle comparison to DB2 (page 5)

http://otn.oracle.com/products/oracle9i/pdf/CWP_9IVSDB2_PERF.PDF

2. Method for managing lock escalation in a multiprocessing,

multiprogramming environment US Patent #4,716,528 (Crus; Richard A.;

Haderle; Donald J; Herron; Howard W)

Note that the above is accurate for DB2 V7.2, DB2 V8.1 and Oracle 9i. Future

versions may or may not change this behavior.

A technical discussion of Row Level Locking
Page 5

© Copyright IBM Corporation 2002
IBM Canada
8200 Warden Avenue
Markham, ON
L6G 1C7
Canada

Printed in United States of America
8-02
All Rights Reserved.

IBM, DB2, DB2 Universal Database, OS/390, z/OS, S/390, and the e-
business logo are trademarks of the International Business Machines
Corporation in the United States, other countries or both.

References in this publication to IBM products or services do not imply
that IBM intends to make them available in all countries in which IBM
operates.

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein; these
changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating
environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee
that these measurements will be the same on generally available
systems. Furthermore, some measurement may have been estimated
through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

All statements regarding IBM's future direction or intent are subject to
change or withdrawal without notice, and represent goals and
objectives only.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products. Questions on the capabilities of
non-IBM products should be addressed to the suppliers of those
products.

The information in this white paper is provided AS IS without
warranty. Such information was obtained from publicly available
sources, is current as of 08/15/2002, and is subject to change. Any
performance data included in the paper was obtained in the
specific operating environment and is provided as an illustration.
Performance in other operating environments may vary. More
specific information about the capabilities of products described
should be obtained from the suppliers of those products.

